Lysophosphatidic acid induces a sustained elevation of neuronal intracellular calcium.

TitleLysophosphatidic acid induces a sustained elevation of neuronal intracellular calcium.
Publication TypeJournal Article
Year of Publication1997
JournalJournal of neurochemistry

Lysophosphatidic acid (LPA) is a lipid biomediator enriched in the brain. A novel LPA-induced response in rat hippocampal neurons is described herein, namely, a rapid and sustained elevation in the concentration of free intracellular calcium ([Ca2+]i). This increase is specific, in that the related lipids phosphatidic acid and lysophosphatidylcholine did not induce an alteration in [Ca2+]i. Moreover, consistent with a receptor-mediated process, there was no further increase in [Ca2+]i after a second addition of LPA. The LPA-induced increase in [Ca2+]i required extracellular calcium. However, studies with Cd2+, Ni2+, and nifedipine and nystatin-perforated patch clamp analyses did not indicate involvement of voltage-gated calcium channels in the LPA-induced response. In contrast, glutamate appears to have a significant role in the LPA-induced increase in [Ca2+]i, because this increase was inhibited by NMDA receptor antagonists and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor antagonists. Thus, LPA treatment may result in an increased extracellular glutamate concentration that could stimulate AMPA/kainate receptors and thereby alleviate the Mg2+ block of the NMDA receptors and lead to glutamate stimulation of an influx of calcium via NMDA receptors.

Short TitleJ Neurochem
Enter your linkblue username.
Enter your linkblue password.
Secure Login

This login is SSL protected