Thiamine deficiency in the pathogenesis of chronic ethanol-associated cerebellar damage in vitro.

TitleThiamine deficiency in the pathogenesis of chronic ethanol-associated cerebellar damage in vitro.
Publication TypeJournal Article
Date Published2005

Nutritional deficiencies associated with long-term ethanol consumption may cause neuronal damage in ethanol-dependent individuals. Thiamine deficiency, in particular, is thought to contribute to ethanol-associated cerebellar degeneration, although damage may occur in adequately nourished alcoholics. Thus, the present study examined the effects of thiamine depletion and ethanol exposure on cytotoxicity in rat cerebellum. Organotypic cerebellar slice cultures were treated starting at 25 days in vitro with 100 mM ethanol for 11 days or 10 days followed by a 24-h withdrawal period. This exposure paradigm has previously been shown in hippocampal slice cultures to result in spontaneous cytotoxicity upon ethanol withdrawal. Additional cerebellar cultures were exposed to the thiamine depleting agent pyrithiamine (10-500 microM) for 10 or 11 days, some in the presence of ethanol exposure or withdrawal. Other cultures were co-exposed to thiamine (1-100 microM), 500 microM pyrithiamine, and ethanol for 10 or 11 days. The results demonstrated that neither 11-day ethanol treatment nor withdrawal from 10-day exposure significantly increased cerebellar cytotoxicity, as measured by propidium iodide fluorescence. The 11-day treatment with 100 or 500 microM pyrithiamine significantly increased propidium iodide fluorescence approximately 21% above levels observed in control tissue. Cultures treated with both ethanol (11 days or 10 days plus withdrawal) and 500 microM pyrithiamine displayed a marked increase in cytotoxicity approximately 60-90% above levels observed in control cultures. Pyrithiamine and ethanol-induced cytotoxicity was prevented in cultures co-exposed to thiamine (10-100 microM) for the duration of pyrithiamine treatment. Findings from this report suggest that the cerebellum may be more sensitive to the toxic effects of thiamine deficiency, as compared with alcohol withdrawal, associated with alcohol dependence.

Short TitleNeuroscience
Enter your linkblue username.
Enter your linkblue password.
Secure Login

This login is SSL protected