AMRI-59 functions as a radiosensitizer via peroxiredoxin I-targeted ROS accumulation and apoptotic cell death induction.
Author | |
---|---|
Abstract |
:
Previously, we identified AMRI-59 as a specific pharmaceutical inhibitor of peroxiredoxin (PRX) I enzyme activity. In this study, we examined whether AMRI-59 acts as a radiosensitizer in non-small cell lung cancer cells using clonogenic assays. The intracellular mechanisms underlying the radiosensitization effect of AMRI-59 were determined via immunoblotting in addition to measurement of ROS generation, mitochondrial potential and cell death. AMRI-59 activity in vivo was examined by co-treating nude mice with the compound and γ-ionizing radiation (IR), followed by measurement of tumor volumes and apoptosis. The dose enhancement ratios of 30 μM AMRI-59 in NCI-H460 and NCI-H1299 were 1.51 and 2.12, respectively. Combination of AMRI-59 with IR augmented ROS production and mitochondrial potential disruption via enhancement of PRX I oxidation, leading to increased expression of γH2AX, a DNA damage marker, and suppression of ERK phosphorylation, and finally, activation of caspase-3. Notably, inhibition of ROS production prevented ERK suppression, and blockage of ERK in combination with AMRI-59 and IR led to enhanced caspase-3 activation and apoptosis. In a xenograft assay using NCI-H460 and NCI-H1299, combined treatment with AMRI-59 and IR delayed tumor growth by 26.98 and 14.88 days, compared with controls, yielding enhancement factors of 1.73 and 1.37, respectively. Taken together, the results indicate that AMRI-59 functions as a PRX I-targeted radiosensitizer by inducing apoptosis through activation of the ROS/γH2AX/caspase pathway and suppression of ERK. |
Year of Publication |
:
2017
|
Journal |
:
Oncotarget
|
Volume |
:
8
|
Issue |
:
69
|
Number of Pages |
:
114050-114064
|
Date Published |
:
2017
|
DOI |
:
10.18632/oncotarget.23114
|
Short Title |
:
Oncotarget
|
Download citation |