Skip to main content

mTOR in Alzheimer disease and its earlier stages: Links to oxidative damage in the progression of this dementing disorder.

Author
Abstract
:

Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly population and has worldwide impact. The etiology of the disease is complex and results from the confluence of multiple mechanisms ultimately leading to neuronal loss and cognitive decline. Among risk factors, aging is the most relevant and accounts for several pathogenic events that contribute to disease-specific toxic mechanisms. Accumulating evidence linked the alterations of the mammalian target of rapamycin (mTOR), a serine/threonine protein kinase playing a key role in the regulation of protein synthesis and degradation, to age-dependent cognitive decline and pathogenesis of AD. To date, growing studies demonstrated that aberrant mTOR signaling in the brain affects several pathways involved in energy metabolism, cell growth, mitochondrial function and proteostasis. Recent advances associated alterations of the mTOR pathway with the increased oxidative stress. Disruption of all these events strongly contribute to age-related cognitive decline including AD. The current review discusses the main regulatory roles of mTOR signaling network in the brain, focusing on its role in autophagy, oxidative stress and energy metabolism. Collectively, experimental data suggest that targeting mTOR in the CNS can be a valuable strategy to prevent/slow the progression of AD.

Year of Publication
:
2021
Journal
:
Free radical biology & medicine
Volume
:
169
Number of Pages
:
382-396
ISSN Number
:
0891-5849
URL
:
https://linkinghub.elsevier.com/retrieve/pii/S0891-5849(21)00260-4
DOI
:
10.1016/j.freeradbiomed.2021.04.025
Short Title
:
Free Radic Biol Med
Download citation