Skip to main content

Synchronous detection of ebolavirus conserved RNA sequences and ebolavirus-encoded miRNA-like fragment based on a zwitterionic copper (II) metal-organic framework.

Author
Abstract
:

From a three-dimensional (3D) metal-organic framework (MOF) of {[Cu(Cmdcp)(phen)(H2O)]2·9H2O}n (1, H3CmdcpBr = N-carboxymethyl-(3,5-dicarboxyl)pyridinium bromide, phen = phenanthroline), a sensitive and selective fluorescence sensor has been developed for the simultaneous detection of ebolavirus conserved RNA sequences and ebolavirus-encoded microRNA-like (miRNA-like) fragment. The results from molecular dynamics simulation confirmed that MOF 1 absorbs carboxyfluorescein (FAM)-tagged and 5(6)-carboxyrhodamine, triethylammonium salt (ROX)-tagged probe ss-DNA (probe DNA, P-DNA) by π…π stacking and hydrogen bonding, as well as additional electrostatic interactions to form a sensing platform of P-DNAs@1 with quenched FAM and ROX fluorescence. In the presence of targeted ebolavirus conserved RNA sequences or ebolavirus-encoded miRNA-like fragment, the fluorophore-labeled P-DNA hybridizes with the analyte to give a P-DNA@RNA duplex and released from MOF 1, triggering a fluorescence recovery. Simultaneous detection of two target RNAs has also been realized by single and synchronous fluorescence analysis. The formed sensing platform shows high sensitivity for ebolavirus conserved RNA sequences and ebolavirus-encoded miRNA-like fragment with detection limits at the picomolar level and high selectivity without cross-reaction between the two probes. MOF 1 thus shows the potential as an effective fluorescent sensing platform for the synchronous detection of two ebolavirus-related sequences, and offer improved diagnostic accuracy of Ebola virus disease.

Year of Publication
:
2018
Journal
:
Talanta
Volume
:
180
Number of Pages
:
396-402
Date Published
:
2018
ISSN Number
:
0039-9140
URL
:
http://linkinghub.elsevier.com/retrieve/pii/S0039-9140(17)31249-3
DOI
:
10.1016/j.talanta.2017.12.045
Short Title
:
Talanta
Download citation