Skip to main content

An alternate route for adeno-associated virus entry independent of AAVR.

Author
Abstract
:

Determinants and mechanisms of cell attachment and entry steer the Adeno-Associated Virus (AAV) in its utility as a gene therapy vector. Thus far a systematic assessment of how diverse AAV serotypes engage their proteinaceous receptor AAVR (KIAA0319L) to establish transduction has been lacking, despite potential implications for cell and tissue tropism. Here, a large set of human and simian AAVs as well as in silico reconstructed ancestral AAV capsids were interrogated for AAVR usage. We identified a distinct AAV capsid lineage comprised of AAV4 and AAVrh32.33 that can bind and transduce cells in the absence of AAVR, independent of multiplicity of infection. Viral overlay assays and rescue experiments in non-permisive cells demonstrate that these AAVs are unable to bind to or use the AAVR protein for entry. Further evidence for a distinct entry pathway was observed in vivo, as AAVR knock out mice were equally permissive to transduction by AAVrh32.33 compared to wild type mice upon systemic injection. We interestingly observe that some AAV capsids undergo a low level of transduction in the absence of AAVR, both in vitro and in vivo, suggesting that some capsids may have a multi-modal entry pathway. In aggregate, our results demonstrate that AAVR usage is conserved amongst all primate AAVs except for those in the AAV4 lineage, and a non-AAVR pathway may be available to other serotypes. This work furthers our understanding of entry of AAV, a vector system of broad utility in gene therapy.Importance: Adeno-Associated Virus (AAV) is a non-pathogenic virus that is used as a vehicle for gene delivery. Here, we have identified several situations in which transduction is retained in both cell lines and a mouse model in the absence of a previously defined entry receptor, AAVR. Defining the molecular determinants of the infectious pathway of this highly relevant viral vector system can help refine future applications and therapies of this vector.

Year of Publication
:
2018
Journal
:
Journal of virology
Date Published
:
2018
ISSN Number
:
0022-538X
URL
:
http://jvi.asm.org/cgi/pmidlookup?view=long&pmid=29343568
DOI
:
10.1128/JVI.02213-17
Short Title
:
J Virol
Download citation